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This work concludes the presentation of methods for evaluation of integrals required 
in electron-atom scattering using an analytic basis set. Methods are presented for the 
calculation of exchange integrals between spherical Bessel functions and exponential 
functions. For reasons of relative speed and applicability, six different methods are 
presented. Features of each are discussed and a scheme is described for selecting the 
most desirable method for a given case. 

1. INTRODUCTION AND DEFINITIONS 

Techniques for the inclusion of many-particle effects in calculations of bound- 
state properties of atoms have received extensive development, use, and success [I]. 
Application of these methods to calculations of electron-atom scattering is of 
considerable interest and is possible with reasonable expenditure of effort. We 
have extended a many-body variational technique to permit the calculation of 
correlation corrections to the reactance matrix R for electron-atom systems of 
arbitrary size [2]. Since the method utilizes an analytical basis set, this requires 
the inclusion of analytic functions which can describe a scattered electron asymp- 
totically. For this purpose we have selected the specific forms: 

which have, respectively, sine-like and cosine-like behavior at large r. Here j,(kr) 
is the spherical Bessel function of the first kind. The linear combination in Eq. (2) 
is selected to approximate the spherical Bessel function of the second kind, the 
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Neumann function, at large r, while remaining bounded at the origin [3]. Functions 
of this type for each (k, , Z,) channel available in the system are added to the usual 
basis of Slater-type orbitals: 

(3) 

The evaluation of all matrix elements required in scattering calculations requires 
combinations of six basic types of integrals: 

G(h; p / k, a) = 1,” dr j,(kr) r”-“e-“, (4) 

H(h, p; p I kl , k, , a) = i m dr j,(k,r) j,(k,r) rv’-A-ue’e-a’T, (5) 
0 

Z@, ~1; P I k, , k2) = ja ~rjA(klr)ju(k2r) rpPA-,, 
0 

(6) 

W, p; P, q I k, , k2 , a> = s m dr j,(kr) j,,(k,r) -&(a, r) rp-A-u, (7) 
0 

W(h; p, q I k, a, /I) = jrn dr j,(kr) A,(a, r) PAePBr, (8) 
0 

WA PL; P, q I k, , k, , a, ,8) = j,” dr, j,(k,r,) rFPAePrl jam dr, j,(k,r,) r~-‘e-“z. (9) 
Tl 

In Eqs. (4)-(9), A, CL, p, and q are nonnegative integers; k, and k2 are nonnegative 
and real; and the real parts of e and /I are positive. The auxiliary function A,(ol, r) 
in Eqs. (7) and (8) is defined by 

Av(a, r) = jm ds ?‘e)e-ns. (10) r 

In paper I of this series [4] we have described methods for the evaluation of 
G, H, Z, V, and W integrals. The purpose of the present work is to explain proce- 
dures for the evaluation of X integrals as well as to indicate some additional 
techniques for G, H, and Z integrals. Some techniques for evaluating these integrals 
have also been discussed by Harris and Michels [5]. For Xintegrals, both ill and ,L3 
are real. 

The nature of the X integrals has made their evaluation particularly difficult. 
Due to its form, the integrand can be wildly oscillatory in two dimensions. This 
definitely precludes direct application of a quadrature technique since for very 
reasonable values of the parameters, the number of points required is quite 
prohibitive. Furthermore, recurrence formulas frequently introduce tremendous 
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losses of significance and series expansions have small and difficult-to-determine 
regions of convergence. The result of these considerations has been that, in order 
to assure uniform minimal accuracy with greatest efficiency, it has been necessary 
to employ one of six different techniques for the evaluation of Xintegrals depending 
on the values of the eight parameters h, CL, p, LJ, k, , k, , 01, and ,8. 

It is convenient in deriving the six methods to introduce some further definitions. 
We define the core function 

x(h, p, k, u I r) = j,(kr) r+%-av, (11) 

in terms of which the X integral is expressed as 

At the same time we introduce the complementary integral Z, defined by 

and since 
cc 

.i 1 

a m J.2 
drl dr2 = dr, dr, , 

0 - 1’, .c i 0 ‘0 

we see that the relationship between X and Z is 

~@,p;p,qlk~~kz> 01, P, = Zh k 4, P I k, > k, > P, ~9. (14) 

The rest of this paper is organized as follows. In Section II we derive each of 
the six methods for evaluation of X integrals. Section III contains a discussion 
of our studies of numerical accuracy and speed as functions of the eight parameters 
of Xfor the six methods. We present also an algorithm for selection of the optimum 
method for a specified h, p, p, q, k, , k, , 01, and p. Our summary conclusions are 
given in Section IV. The appendices include discussion of additional techniques 
for the evaluation of G, H, and I integrals in addition to those presented in paper I 
as well as some of the algebraic detail required in the evaluation of the X integrals. 

Our work on these integrals benefitted greatly from discussions with Professor 
F. E. Harris, which we wish to acknowledge here. Our analysis started from the 
basis of methods recently published by Harris and Michels [5]. Throughout this 
work we have relied heavily on the reference work on mathematical functions 
prepared by the U. S. National Bureau of Standards [6]. In most cases our notation 
follows theirs. Formulas from this handbook will be referenced here by the notation 
HMF followed by the referenced equation number. 
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II. DERIVATION OF SIX METHODS 

A. Degenerate Case: XDEG 

There is one case in which the calculation of X integrals becomes trivial. The 
sum of X and Z is 

X(4 P; P, q 1 k, , kz 2 ol,p)+Z(h,~;~,qlkl,k,,a,13) 
= G(h;plk,,a)G(~;q;kz,P). (15) 

From Eq. (14) it is seen that if h = p, p = q, k, = k, , and 01 = /3, then x = Z. 
Thus Eq. (15) reduces in that case to 

(16) 

so in this important special case, Eq. (16) gives a simple formula for the evaluation 
of x. 

B. First Injinite Series: XSERI 

Define 

Then using (HMF, 10.1.2) for the power series expansion of j,(z), 

.dz) = Zn T;” pm)! ! igly ;; + I)! ! ’ 

(17) 

(18) 

the function y is expressed as 

Y(P, 4, k, 3 13 I r> = f 
(-l)* k;+2m 

m=O (2m)!! (2~ + 2m + l)!! Ag+2m(P’ r)’ (19) 

Substitution of this result into X gives 

Wt CL; P, 4 I k, , k, 7 01, B> 

= j”drx@,p,k,, 4r>yV(~,q,k~,SIr) 
0 

(20) 

!.J+?m 
= f. (2m)! &y+k;m + 1) ! ! WC 4 + 24 p 1 kl ’ p, 4. (21) 
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This result can be expressed in the form 

where 

c(p, k,) = k,“@p + I)! !, 
(23) 

and 
d,, = (- 1)” k;“/(2m)! ! [2p + 312, , 

W2, = Wk q + 2m,p I k , P, ~1. 

Here [a],, is defined by 

(25) 

[al,, = a(u + 2)(a + 4) ... [a + 2(m - l)], [alo = 1. (26) 

This series converges for kz < 8. However, while in this case limm+m [d, W,,] + 0, 
we find that d, becomes vanishingly small while W,, grows very large. The resulting 
computational difficulties can be overcome by redefining 

such that 

(27) 

d, W,, = dm’W;, . 

Successive terms in the series can then be obtained easily as follows: 

do’ = 1, 

4’ = (-/Vm)[B/C$ + 2tn + 111 dh-, , m > 0, d 

Wo’ = Wk q, P I k, , /A 4, 
(29) 

where 
Wm’ = [Gm’ + (4 + ~n)(k,/B) WLl/B, I?1 > 0, 

G,‘=(k21p)mG(h;p+q+mik,,ol+~) 

and Eq. (29) is obtained from Eq. (I-61). 
Using Eq. (48) of Paper I, the G,’ are obtained from 

Go’ = GO; P + q I k, , (y. + PA 

G,‘==(k21B)W;~+q+l ik,~+P), 

(30) 

(31) 
G,’ = [(p + q + in - 1)(2h f 2 - p - q - m)(k2//l)2 GL-, 

+ 2(a i P)(P + q t- 1)) - A - 1)&/P) Gin-&[(a + /3>” + k121, m > 1. 
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Thus after obtaining the starting values of Eqs. (29) and (31), Go’, Gr’, and B’,‘, 
by the methods of paper I, successive terms in the series of Eq. (22) are obtained 
recursively. The number of operations required at each step in m may seem larger 
than desirable, but is quite reasonable in view of the complexity of A’. 

C. Second Injinite Series: XSER2 

Define 

Expanding ea(r-s) in its power series and also expanding (k,s)-A,jn(kls) by (HMF, 
10.1.2) leads to 

after transformation of the limits of the integral from (0, r) to (0, 1). Then on 
recognizing that the integral remaining in Eq. (33) is the Beta function, 
B(p + 2n + I, m + l), and using (HMF, 6.2.1) to evaluate it, g reduces to 

s(A p, k, 9% I r> = f F (-1)” k”+2ncP(p + 2n)! 
,~o,=o(2~)!!(2X+2n+l)!!(p+m+2n+l)!r 

Bfm+2n+l 

(34) 
which may be rewritten 

g(A p, k, ,a I r) = : lnfl 
(- 1)” k:f’man-2m(p + 2m)! 

m=. (2m)!!(2X+2m+ l)!!(p+n+ l)! ’ 
9+%+l, (35) 

7L=O 

where the sum on m terminates with the largest integer less than or equal to n/2. 
It is convenient to express Eq. (35) in the form 

g@,p,kl,~lr)= $$k$ z. d,, (p T2), ?‘+“+I, (36) 

where c(h, kl) is defined in Eq. (23), 

lnl21 

dn = C twz, 
WZ=O 

(37) 

(-1)” (P + l)zm 
tna = (2m)! ! [2x + 312, (38) 
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and (a), is Pockhammer’s Symbol, (HMF, 6.1.22), defined by: 

(a), = a(a + I)(a + 2) .‘. (a + n - 1); (a), = I. 

In terms of g, X is defined as: 

(39) 

using Eqs. (14) and (32). On substituting Eq. (36): 

-JM,p;p,qlkl,kz,~P) 

G(p.; p -t q -t- II -t 1 I k, , 01 -t P) (41) 

= $$$ 5 d,G, 
Tk=O 

where: 

(42) 

G, = 
(P f2L 

G(p;ptqi-n+ 1 lk,,a+/$. 

Successive terms of this series can be obtained as follows: 

(43) 

do = t, 

d -d 2n+1 - 2n ) n>O 

dzn = An-1 f t, , n>O 

I, = 1 
t = -p+2m--1 p + 2m 

G-1 = ‘+ ’ 

2m LJT t,-, ) 2h + 2m + 1 01~ m>O 

-G(p;~+qlk,,~+rB) a 

G,= G(p;p+q+ 1 Ik,,a+B) 

p+q+n++l-p-q--n 
G”=[ p+n p+n+l 

GGn-2 

(44) 

(45) 

(46) 

+2(a+fc3)P+4+n-- 
p+n+l aGn--1 I/ [(a + ,W + kz’l, n>O 
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This technique is found to be appropriate for k, < 01. However, for k, > 01, 
~1~ becomes large rapidly with increasing II. In this case, it is advantageous to 
define: 

I I such that d, G,! 

u’,’ = (oc/k,)‘” d, 

I ’ l,l = (cY/kJ2”1 t,,, 

Gn’ = (kl/4n G, 

d,G, . Equations (44)-(46) then become 

dO’ = t,‘, 

d;,,, = (+A d;j;n , II > 0. 

d;, = (u/k,) dins1 + t,‘. 11 > 0, 

t,’ = 1) 

t,’ z - 
p+2m-I P + 2m 

2m 2h + 2m + 1 tL1 ’ 117 ‘- 0, 

Gn’ = [ 
p+4+n 2Cl+1-P-q-nkzG’~ 

p +I2 p+n+1 1 12 2 

(47) 

(48) 

(49) 

(50) 

+2(01+p)pfq+“-- p+t7fl kG,]/Ka + B>” + h21, n > 0. 

D. Finite Sum Formula: XSUA4 

The integral y defined in Eq. (I 7) can also be evaluated by using the trigonometric 
expansion of the spherical Bessel function (HMF, 10.1.8) which can be expressed 
in the form 

Substituting this in Eq. (17) leads to 

y(p, q, k, , /3 I r) = 9 Im i in p + n! 
n ! (p - n) ! (2k,)” 4-,-n-1@ - ik2 , r) 

I 
(52) 

2 n=O 
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for q > 2~. Substituting into Eq. (20) gives for this case 

=yrm i 
1 

i”(p + n)! 
W(X;q- p-n- l,p/k,,P--&,c4 

2 n=0 n! (p - n)! (2k,)” i 

(53) 
for the case q > 2~. And using Eqs. (60) and (61) of paper I gives 

x(h, P; P, q I k 3 k, 7 01, PI 

n=O n! (p - n)! (2k,)” 
%.-n-1 (q - p - n - I)! 

m=O m! (p - ika)Q-u-n-na 

9 > 2P. (54) 

The order of these two finite sums can be reversed and the terms in the outer sum 
added in the inverse order. This is shown diagrammatically in Fig. 1 where it is 
easily seen that the same area is covered. This leads to 

X(X,CL,P,q/kl,kz,ol,~)= v Im ‘-gl dnfnGq.+-,, 4 > 2P> (55) 
2 T&=0 

n.:.;._; 
0 w-1 

m 

FIG. 1. Terms included in the XSUM method. All terms contained within the diagram must 
be included. The order is not significant. 

where 
ml&,74 

d, = C tm > 
WZ=O 

(56) 

fn = (q - p - 1) ! (/3 + ik2)n+1/(q - p - 1 - n) ! (B” + k;)n+l, (57) 

G,-,+, = G(h; p + q - P - 1 - n / k, , a + p - ik,), (58) 
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and 

t??l -= (p + m)! (q - p - 1 - m)! (k, + ifl)Vr! (tL - m)l (4 

Successive terms in this sum are obtained from 

to= 1, 

t = p -t m p - nz + 1 k, + $3 
111 nl q - p-m 2k, ‘+l’ 

do = to > 

d = 4-l t tn 9 
12 

t 

O<n<p, 

4-l 9 P < n, 

fo = (B i- ik2MB2 + k,2), 

fn = Kq - P - n>@ -t ik2MP + k2*)lfn-, y 

m > 

175 

1) ! (2k,)“. 
(59) 

(60) 

(61) 

(62) 
II > u. 

Complex G integrals from Go to G,-,-, can be obtained from Eq. (48) of paper 1. 

E. Contour Integral Method: XCI 

Direct numerical quadrature is not in general of value for the calculation of X 
integrals. However, as shown by Harris and Michels [5] for special values of the 
parameters, if X is transformed into a contour integral in the complex plane such 
that a nonoscillatory integrand is obtained, then numerical quadrature is feasible. 
Such a transformation may be effected by using the Poisson integral representation 
of j,(z) (HMF, 10.1.13) 

zn 1 
.L(4 = - I 2n+1n! _ 

eizt(l - r2), dt. 
1 

When substituted in Eq. (17), this gives 

Y(CC~ 4, k2, B I r> = &$j’ dt(1 - t2)p A,@ - ik,t, r). 
. -1 

(63) 

Integration is carried out by numerical quadrature along a contour path in the 
complex plane, selected to avoid the possible pole at the origin. A good choice is 
a path in the complex plane which connects the limits of the integral using only 
an angular integration at constant radius. This is shown in Fig. 2 where the path 
of Eq. (64) is indicated as r, and the desired path at constant radius is shown 
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FIG. 2. Contours for XC1 method. The path I’, is at constant distance from the origin. 

as r, . Using the transformation pei+ 1 /3 - ikt, Eq. (64) may be expressed in 
the form 

y(p, q, k, , ,B I r) = “‘+l inll d$~ ei(“+l)‘(p cos r#~ - fl)” A,(peim, r), 
2p! k;+l . -*, (65) 

where 
p” = /3’ + k,2, 

+r = tan-l(k,//3). 

Substitution of this expression into Eq. (20) for X leads to 

Wl,xP,qlkl,kz,~,P) 

(66) 

ui 1 

= 2; k;+l s 
& d$ ei("+l)c.+ (p ~0s $ - P)” WX; q, P i kl, pi”, a>. (67) pm, 

A special case of this formula was derived by Harris and Michels [Yj. This integral 
is evaluated by numerical quadrature with W obtained by recurrence as in the 
first infinite series. 

F. Recurrence Procedure: XREC 

The last of the methods used to evaluate Xintegrals utilizes a series of recurrence 
relations. These all follow from properties of j,(z) and relate X integrals with the 
same k, , k, , 01, and /3 but differing values of X, p, p, and q. The procedure used 
here is based on a series of three-term recurrence relations in which only p and q 
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vary. These relations are shown diagrammatically in Fig. 3. The equations and 
their derivation are given in Appendix A. It is also shown in Appendix A that 
the same relations are applicable to Z integrals if the sign of each term in H is 
reversed. 

J 

FIG. 3. Diagrams defining recurrence relations used in the XREC method. Small circles 
denote parameter values connected by a recurrence relation. 

Using the recurrence relations in p and q for both X and Z, which are repre- 
sented by Fig. 3, the recurrence procedure shown in Fig. 4 is constructed. As shown 
there, this procedure starts with Z(0, 0; 0,O 1 k, , k, , /3, a). This integral is obtained 
most rapidly and accurately by the second infinite series XSER2, which is found 
to converge satisfactorily for X and/or Z in the case h = p = p = q = 0. 
In the second step of the procedure a special formula is employed for 
Z(0, 1; 0, 1 / k, , k, , p, m). This formula follows from the relation represented 
by diagram C of Fig. 3 and derived in Appendix B in the form 

kJ(O, 1; 0, 1 I k2 , k ,B, a) = - ~Z(O, 0; (40 I k, , kI , B, a) + tar1(k2/P)/k2 

- fWA 0; 0 / k, > k, ,a + ,Q, (68) 
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Z(0,O;O.O 1 

+ 

k2. k, .D.~~ 1 

Z(O.1;o.l~ k2.k,.Pd 

Z(0.X;0,$k2. k,,Pd 

Eq. (68) 

Eq. (AI31 

Eq. (A71 Eq. (Al21 

ZlO,X;O,X-llk,.k,.dnl ZiO,h;O.X+lI k2,k,.fl,i) 

Eq. (All) 

Z(O,h:O,pl k2, k, .ii.<r) 

Eq. 114) = 
X(h,O;p.Ol k,,k>,ct .:I 

Eq. (A61 + 
X(h.1;p.l 1 k,.k2,a.ij) 

Eq. IA61 + 
X(LP;P.PI k,.k2.m.P) 

Eq. (A71 / \ Eq. (A121 

X(h,g;p.l.c-11 k,, k2, a,$) X(LKP.P+‘I kl.kz. “3) 

\ / Eq.(All) 

x(X,l.l;p.q 1 k,.k2.tr.ii) 

FIG. 4. Schematic representation of the recurrence procedure for obtaining X(h, p; p, q / k, , 
k a, % k9. 

where 

= 1 [(k, + k,) tan-l ( “: : F ) - (k, - k2) tan-l (yPj)] 
2k,k, 

a+B 
-X&A 

(a + P,” + (k + kJ2 1 I (a + /3))” + (k, - kd2 ’ 
(69) 

Using these first two 2 integrals, Eq. (A6) can be used to obtain 
Z(0, h; 0, h / k, , k, , p, CX). Figure 3H can then be used to recur either upward 
or downward in p to obtain Z(0, X; 0, p 1 k, , k, , /3, IX) providing that first either 
.W, k 0, h - 1 I k, , k, , P, 01 or Z(0, X; 0, h + 1 1 k, , k, , /3, 01) has been found. > 
These follow from Fig. 3D and Fig. 35, respectively, except in the special case 
X = 0, p > 0. In that case, a special formula for Z is used: 

W4 0; 0, 1 I k, , k, , P, a) 

= 1 tan-l(k,//3) - l/2 tan-l ( “,: 1 F ) + l/2 tan-l ( k: i 2 ) 

(a + PJ” + (k, - kd2 
+ e In [(KY + ,Q2 + (k, + k2)2 Ii/ Kz2 + k2) hl. (70) 

This is also derived in Appendix B. 



INTEGRALS IN SCATTERING THEORY II 179 

At this point Eq. (14) is used to give 

(71) 

The same procedure is then followed in p and q for X integrals as was employed 
in h and p for Z integrals. Thus, X(X, 1; p, 1 1 k, , k, , LY, /3) is obtained from 
Fig. 3C in the special case q = 1. Then Fig. 3C gives X(h, p; p, p 1 k, , k, , a, 6). 
From this integral, Fig. 3H gives X(X, CL; p, q / k, , k, , (Y, /3) after the starting 
points JV, CL; P, CL - 1 I k, , k, , a, PI or J%t I”; P, EL + 1 ; k, , k, , 01, B) are 
obtained from Fig. 3D or Fig. 33, respectively. Again in the special case p = 0, 
q > 0, a specific formula is required for the starting point. It is easily shown that 

x(X, 0; p, 1 j k, , k, , 01, fl) = Im ! ( p 2 ik, G@; P i k, , cx f /3 - ikl)//k2. (72) 

Thus, in principle, any X integral can be obtained by this recurrence prescription 
though the process is quite lengthy and tedious and requires the calculation of 
numerous H integrals along the way. 

Ill. NUMERICAL CONSIDERATIONS: CHOICE OF METHOD 

Exhaustive calculations of X integrals were performed with each of the methods 
to determine accuracy and computation time as functions of the eight parameters. 
Most of these tests were carried out in the BASIC language on the CALL/360 
computer terminal system. This made possible such techniques as effortless repeti- 
tion of identical calculations in single and double precision. It was also possible 
with this approach to examine details of each of the methods in order to understand 
their regions of applicability and rates of convergence. For example, it was found 
that in certain special cases, the second infinite series has a zero for every fourth 
term in the sum. Knowledge of this sort of detail has made it possible greatly to 
improve the performance of programs for these algorithms. The accuracy of a 
specific X integral was determined by observing the number of digits in agreement 
between single and double precision calculations or between calculations by two 
independent methods. In addition, use was made of the fact that any desired X 
integral can be obtained very easily from the corresponding Z integral by the 
simple transformation of Eq. (15). Thus, each of the methods could be used either 
for X or for Z. Using these techniques we determined ranges of the parameters 
for which each of the methods will give results accurate to not less than eight 
significant digits for the parameter range: 



180 LYONS AND NESBET 

0 < A, p -G 5, 
0 dP, 4 < 20, 
0 < k, , k, < 2.0, 

0.1 < @L, p < 20.0. 

Since the X integral depends in a complex way on eight parameters, it is difficult 
to obtain a clear concept of its analytical behavior. Some general observations 
can be made, however, and are of value in examining the applicability of each 
of the methods. First it is clear that the integrand is oscillatory in each of the two 
integration variables. Furthermore, this behavior becomes more pronounced as 
01 and ,8 become smaller relative to k, and k, , respectively, and as h and TV increase. 
Thus, one would expect to have greater difficulty in evaluating Xfor small 01 and /3 
and large X and p. This is borne out by our experience. It is also of value to realize 
that the character of the X integral function is closely tied to the surfaces p = 2h 
and q = 2~. It was shown in paper I that G integrals are rational functions for 
p > 2X and transcendental for p < 2;\. The same pattern holds for X integrals 
with the result that X is most easily calculated for both p > 2X and q > 2,~; 
while if either p > 2X or q > 2t~, X is better behaved than when both p and q are 
small relative to 2X and 2~. 

Our aim has been to determine a means for calculating a general set of X inte- 
grals to specified accuracy with minimum computational time. In this process the 
parameter space was split into four regions as follows: 

J: p-%2X and q<2p, A: 01 < k, and /3 < k, , 

II: p > 2h or q > 2p, B: n! > k, or /3 > k, . 

Tests were carried out in each region on all methods applicable in that region. 
The most rapid was used first to calculate as many integrals as possible. The 
second most rapid method was then utilized on as many of the remaining integrals 
as possible. Continuing in this way an algorithm was developed to determine 
which method to utilize for a given set of parameters. The most difficult cases 
are those in region IA in which k, z k, with 01 and /3 much smaller than k, and k, 
and with h and p large. Fortunately, these X integrals, when normalized, are also 
relatively quite small and will be of lesser significance in a calculation. 

The considerations about the individual methods which were used in this 
process are the following: XDEG is the quickest and most accurate method. 
Since in this method the X integral reduces to a G integral and methods have been 
presented for the accurate calculation of any G integral [4], there is never a question 
of accuracy. XDEG is used whenever applicable, i.e., when X = CL, p = q, k, = k, , 
and 01 = /3. 
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XSERl is the second most rapid method for calculating X. This series converges 
when k, < /3. Thus, it can be applied to calculate 2 instead of X when k, < Y. 
It is found to become inaccurate as the number of terms required for convergence 
increases. Thus, XSERl should not be used for k, larger than some threshold 
value which we have taken to be 0.6p. 

XSUM applies when q > 2~ in an X integral or likewise when y > 2h in Z 
The sum is found to be accurate for X only when k, is greater than some threshold 
value. The minimum value of k, has been taken to be 0.1 in our calculations. 
XSUM is comparable in time to XSERl and is used when applicable after XSERI 
in preference. 

XSER2 requires about the same length of time as XSERl. However, it has not 
been possible to determine a precise region of convergence for this series. In fact, 
if precautions are taken in the handling of very large and very small numbers, 
this series is found to converge in the case h = p = p == q = 0 for all values of 
the parameters k, , k, , 01, and p, However, the number of terms.required for a 
specified accuracy becomes very large in some cases and, consequently, the method 
becomes rather slow. Moreover, as the values of h, p, p, and q increase the number 
of terms increases rapidly, the sum becomes numerically less accurate, and the 
series fails to converge with increasing frequency. In practice, though this series 
often provides a very rapid and accurate means of calculating X, its value is 
seriously diminished by the vagueness concerning its region of convergence. 
Experience in a great many calculations of X integrals with this series has shown 
that speed and accuracy improve as 01 and /3 become larger relative to k, and as 
X, p, p, and q decrease. Exact values of these parameters which may be used to 
obtain specified accuracy must be determined empirically. XSER2 is used when 
the previous methods are not applicable for cases in which experience has shown 
the method to be reliable. 

XC1 is about l/2 to one order of magnitude slower than XSERl when a sixteen 
point Gaussian quadrature formula is used. The method is quite generally appli- 
cable, though as ac and /3 become small relative to k, and k, , particularly when 
k, z k, , more points are required to yield consistent accuracy. XC1 is used 
when none of the above methods will work, unless a: and /3 are very small. 

XREC is the last choice because it is extremely slow. In general, it requires 
ten to twenty times as much computing time as XSERl. It is used only when none 
of the other methods will produce reliable results. This is mainly in region IA 
when cx<k,, ,B<k,, and k,rk,. Even XREC becomes less accurate as 
these conditions become more pronounced but, as mentioned earlier, these values 
tend to represent a very small contribution in an actual scattering calculation. 
We were not able to derive a method for calculating X integrals which improves 
in accuracy and speed as iy and p decrease in value. This would clearly be of 
considerable value. 
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The properties of the six methods listed above can be combined in an algorithm 
to select one of the methods for a given set of the eight parameters. This algorithm 
is presented in block diagram form as Fig. 5. This lists clearly the criteria used, 

XSERZ 

FIG. 5. Algorithm to select among the six methods of calculating an X integral. 

the order in which the choice is made, and in which cases the result is obtained 
through X and which through 2. The switch from 2 back to X in these cases is 
always accurate and represents the transformation of Eq. (15). This algorithm 
was tested exhaustively over a grid of reasonable mesh size in each of the eight 
parameters. In each case X was calculated by the method indicated by Fig. 5 
and also by XC1 using a 64 point quadrature formula. A table was produced 
giving the numbers of integrals calculated by each method and the number and 
details of all cases in which the two results differed by more than IO-IO. These 
results are summarized in Table I for the four regions indicated above. The 
average time for calculation of an X integral was found to be 0.038 set on an 
IBM 360/91 computer system in calculations of over IO5 Xintegrals. 
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TABLE I 

Results of Tests of Selection Algorithm Shown in Fig. 5.” 

IA 

XDEG 135 
XSUM 0 
XSERl 0 
XSER2 5969 
xc1 1231 
XREC 2385 

Total 9720 

Average time 0.056 

IB 
-__- 

144 
0 

18828 
3645 

63 
0 

22680 

0.037 

IIA IIB 

120 128 
18592 26224 

0 21696 
2184 1232 

0 0 
224 0 

22120 49280 

0.038 0.035 

a Number of integrals done by each method in each region and average time in seconds per 
integral. 

IV. SUMMARY 

The methods presented above are useful for the rapid and accurate calculation 
of X integrals. In the only case in which difficulty still is encountered, the case 
a: <k, , /I <k, , with k, s k, , the values after normalization are orders of 
magnitude smaller than more accurate X integrals. So it is felt this is not a major 
obstacle. However, these integrals do require more time for evaluation. Thus, it 
would be of interest to have an additional means for evaluation of X which would 
improve in speed and accuracy as cases move further into this region. 

A program which embodies the techniques described in this paper has been 
employed very successfully in calculations of e--H and e--He elastic scattering [7]. 

We have not taken into account here any advantage gained when an entire 
set of integrals can be obtained by a single recurrence procedure. The integrals 
required in our practical calculations have varying exponent parameters 01 and /3 
as well as powers of r. In general, the computational disadvantage of the recurrence 
procedure XREC appeared to outweigh any possible saving from producing 
several integrals at once. 

Since the completion of our work, a new method for computing the integrals 
considered here has been published by Ramaker [8]. A detailed comparison of 
this method with those considered here for X integrals has not yet been carried 
out. 

581/11/2-3 
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APPENDIX A 

The recurrence relations for X integrals are derived from the properties of 
j,(z). Using the derivative formula for the spherical Bessel function (HMF, 
10.1.24) 

(1 /t)(d/dz)[z-“+‘j,-l(z)] == -z-nj,(z) 

in an integration by parts of .Y gives 

Y(P, 4, k2 , B I r> 

(Al) 

= (Ilk,) x(p - Lq - 1, k2, B I r> - (Plkd~b - 1, q - 1, k2, P I r> 

where the term in brackets is present only if q is greater than 1. Substituting this 
in X gives the first recurrence relation 

k,Wt~FL;p,q+1lk~,kz, 01, B) + PXC4 p - 1; P, q I k, , k, , 01, P, 
--H(~,c”-l;p+q/k,,k,,cu+P) 
- CqWl p - I; P, q - 1 I k, > k, , a, P)l,>,, = 0. (A3) 

Figure 3A represents this relationship. A second recurrence relation follows from 
the usual recurrence relation for j,(z) (HMF, 10.1.19) 

zj,&) + zj,+,(z) = (2n + l).in(Z) (A4) 

which leads to 

k,X(h,CL-l;P,q-llkl,k2, 01, P, + k,Wk p + 1; P, q + 1 I k, 2 k, 3 (~3 8) 
- (2~ + 1) X0, CL; P, q - 1 i k, , k,, 01, P) = 0. (A5) 

This equation is shown diagrammatically as Fig. 3B. Equations (A3) and (A5) 
may be combined to give the two relations: 

[qk,X(A p - 1; p, q - 1 I k, , k, , 01, 8)1,x, - (2~ + 1) P&t P; P, q I k 9 kz > 01, B> 
+(q--~--1)k,X(h,~++I;p,q+1lk,,k,,~,~) 
+ (2~ + 1) W, p; P + 4 I k, > k, 3 a> P, = 0, 646) 

and 

GW,Er.--l;p,qlk,,k,> ol,B)+(q-2~)X(h,~;p,qlk,,kz,“,B) 
-kWt~;P,q+1Ik~,k,, 01, /3) + WA p; p + q + 1 I k, , k, , a + PI = 0, 

(A71 
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corresponding to Figs. 3C and 3D, respectively. These four equations may be 
further combined to yield the relations of Figs. 3E, 3F, and 3G as the following 
forms: 

k/PX@> P; P, q - 1 I k, , k, , a> r@l - Cp” + kz2) X(x, I”; P, q I k, , k, , a, ,@) 

- (4 - 2~ - 2) W@; p $ 1; p, q 1 k, , k, , a, ,Q 

+ PH(& p; P +- q I k, , k, , a: + P> 

- k&Oh p + l;pi-q+l lk,,k,,a+P) =O, 648) 

(4 - 2~ - 1) qPX@, P; P, q - 1 I k, > k, 7 a, B> 

f- CP” i k,“) k-,X@, p - 1; p, q I k, , k, , aI, 8) 

+ Rq - 2~) h2 - c/P21 X0, P; P, q I k, , k, > 3, B> 
+q~H(h,tL;P$-qlk,,k,,ol+P) 
-pk,H(h,~---I,p+qIk,,k,,Lu.T-P) 
-; k22H(X, P; p + q + 1 I k, , k, , 31 + /$ = 0, 

and 

W) 

[(q - 2~ - 1) h2 - (q -t- 1) B”l X(4 P; P, q I k, > k, 3 a> B> 

+ (8” + b2) P-W, P; P, q + 1 I k, , k, > 01, B, 

+(q-2~--)(q--2tL-2)k,X(X,~+$-I;p,qIk,,kz,~,P) 

+ (q - 2~ - 1) k,Wt P +~ 1; p + q f 1 I k, > k, , 01 + P> 
---~2H(X,~;p+qtlIk,,k,,~1+P) 

+~k,H(h,~~ll;p$q+2/k,,k,,a+~)=O. (AlO) 

Next, Eqs. (A7) and (A9) or alternatively Eqs. (A8) and (AIO) may be combined 
to produce 

(q-b- l)qP%Lp;p,q- 1 lh,kz,a,P) 
- 2(q - pL) P”X@, TV; P, 9 i kl, k2 y a, P) 
-i-(B”+k,?PX(h,CL;P,q+l ih,k2,~,P) 

--k,H(h,~---;p+qlk,,k,,olfP) 

+qPU(~,CL;p+qlkl,k2,~-tP) 
-/3zH(h~;~+q+1 lk,,k,,a:+p) =O (Al 1) 

corresponding to Fig. 3H. 
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The last relation needed in the recurrence procedure is the one which corresponds 
to Fig. 35. By combining Eqs. (A7) and (A8) this equation is obtained as 

These same relationships may be applied to Z integrals simply by replacing X 
with 2 and changing the sign of each term in H. This may be shown as follows. 
By substituting Eq. (15) for Xinto Eq. (A3) and using recurrence relations between 
G integrals given in paper 1 we obtain 

which corresponds to Fig. 3A for Z integrals. The recurrence relation for j,(z), 
Eq. (A4), leads to exactly the same relation for Z as given for X in Eq. (A5). 
Combining these two relations for Z, as done above, for X gives the same set of 
equations with the sole exception that the sign preceding each term in H has now 
been reversed. 

APPENDIX B 

Equations (68) and (69) are derived starting from the version of Eq. (A6) which 
applies to Z integrals in the case h = p = p = q = 0: 

= - aZ(O, 0; 0, 0 1 k2 , k, , p, a) - H(0, 0; 0 i k, , k, , a t p) 

+ ti kAz(O, - 1; P, q - 1 I k, , k, , P, 41. (Bl) 

The last term in Eq. (Bl) is simply G(0; 0 j k, ,/3) and thus Eq. (68) follows by 
using Eq. (45) of paper I to evaluate this integral. 

The evaluation of the H integral to give Eq. (69) presents somewhat greater 
difficulty. By definition, 

H(0, 0; 0 / k, , k, , a) 1 s = j,(k,r) j,,(k,r) e+ dr. W) 
0 
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Using the Poisson integral representation for j,(z) (HMF, 10.1.13) leads to 

fV4 0; 0 I kl > k, , dr exp{ -[m - i(k,s + k,t)J Y} (B3) 

’ ’ ds = 4 -1 s s 
’ dt 

1 
(B4) -1 01 - i(kls + k,t) ’ 

The substitution [ = CY - i(k,s + k,t) = pei* may then be employed. The inte- 
grand is analytic everywhere except at 5 = 0. A contour must be selected which 
avoids the singularity and simplifies the integral as much as possible. For the 
inner integration (on t) the path is broken into two sections, one at constant 4 
and the second at constant p. This results in 

H(O,O;O~k,,kB,Lu)=&j~ dsi+ln[ 01% f (k,s + k# 
2 1 a2 + (k,s - k2)2 3 

- tan-l [ 
k,s - kz i tan-l k,s + k, 1 / [ I / a cy \. OW 

It is seen at this point that the imaginary term is an odd function of s and, thus, 
its contribution vanishes over the symmetric limits. The remaining terms can be 
combined in the form 

Integrating this function produces the expression given as Eq. (69). 
The derivation of Eq. (70) follows mainly from the application of results 

presented in paper I. From Eq. (15) 

where 
(B7) 

and 
G(O; 0 I k2 , P) = (l/k,) tan-Yk2/P) 038) 

G(O; 1 I kl , 4 = l/(a” + k,3, (B9) 

from Eqs. (45) and (42) of paper I, respectively. Also from Eq. (53) of this paper 
and Eq. (60) of paper I, 

X(0,0; 0, 1 / k, , k, , p, a) = Im I$- W(0; 0,O I k, , a: - ik, , p) 1 
1 

@lOI 

=$-Im 
1 cL _’ ik 0; 0 I k, , a + p - ik,)[. (B11) 

1 1 
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This is expressed in terms of a hypergeometric function through Eq. (67) of I 
which may then be evaluated through (HMF, 15.1.4) to give 

The imaginary part of this final expression may be combined with Eqs. (B7)-(B9) 
to give Eq. (70). 

APPENDIX C 

During the course of the development of techniques for evaluating X and 
during further testing of G, H, and I integrals subsequent to the publication of 
paper I, other methods were found for G, H, and I integrals. In the case of H 
and 1, these other techniques have proved superior to those previously described 
and are being employed in our calculations. The method of paper I for G integral 
is still being used though an additional method is presented here for completeness. 

The new method for G and H integrals is analogous to XC1 and follows also 
from the Poisson integral representation of ,jJz). Substitution of Eq. (63) into 
Eq. (4) leads to 

Transformation to a contour at constant distance from the origin in the complex 
plane as used in XC1 and some rearrangement of terms yields the form 

p! /p-P @ 
GO; P 1 k, 9 m) = A! k;+l ~ I, 44 cos[(p - 8 $1 (co, 4 - ;,‘, (‘3 

where 
,,2 = a2 $ k 2 

@ = tan-‘(kl;a). 
(C3) 

The same technique applied to the spherical Bessel function ,j,(k,r) in H 
produces the result 

U(h,~;pIk,,k,,n)=PU+lImd~[pcos~-n]n p! k;+l ,, 

x {cos[(p + 1) 41 Re[G@; P I k, , w91 
+ sin[(p f 1) $1 Im[G(k P I k, , pe-“911, (C4) 
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where use has been made of the relations 

WG@;p I k, 41 = Re[G(k P I k, z*>l, 
Im[G(h; p j k, z)] = -Im[G(h; p 1 k, z*)]. 

(C5) 

An alternative formula for H may be obtained by using the Poisson integral 
representation for both j,(k,r) and j,(k,r) in the definition of H. The resulting 
expression was found to be less useful than Eq. (C4). In our work, H integrals 
are calculated either by Eq. (C4) or by the finite sum method presented in paper I. 
Numerical quadrature of Eq. (C4) with a 16 point Gauss formula is found to be 
sufficiently accurate and rapid for all cases where the finite sum formula is not 
applicable. The recurrence method for H integrals described in paper I is always 
slower. 

Two complementary formulas have been employed for the calculation of Z 
integrals. One or the other of these is found to be rapid and accurate for every 
case and always superior to considering Z as the limit of H as 01 goes to zero as 
proposed in paper I. The basic formula is given as Eq. (AlO) of paper 1. This 
formula is valid for k, < k, Thus, of course, the same formula may be utilized 
for the case k, > k, by interchanging k, with k, and h with /1. 

If the two k values are far apart so that the ratio k,/kz is not close to 1, then the 
usual infinite series for 2F1(a, 6; c; z), (HMF, 15.1 .l), will converge rapidly. We 
have found this the most efficient way to calculate Z when kJkz is not close to 1. 
For k,/k, - 1, (HMF, 153.11) may be used to give a series expansion for 
&(a, b; c; z) which converges more rapidly as the ratio approaches 1. This method 
is entirely complementary to the previous case: Whenever the first expansion 
decreases in efficiency, the second improves. The two formulas cover all cases 
very well. 
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